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0.1 Sampled data system and its mathematical representation

0.1.1 Discretization of continuous linear time invariant (LTI) systems

We consider a system represented by a state space model :

ẋ = Ax + Bu, x(0) = x0

y = Cx + Du

We assume that a zero order holder is inserted in front of the system and the output of the holder is denoted u(kT ),
which is a input for the plant. The output of the plant is sampled at time instance kT and it is denoted y(kT ). If we
consider u(kT ) and y(kT ) are input and output of the system, the system can be considered as a discrete time system
which convert the input sequence {u(kT )} into {y(kT )}. The input-output relationship of the system can be easily
calculated as follows. Since the input for the continuous system is held constant during the sampling interval:

u(t) = u(kT ) (kT ≤ t < (k + 1)T ) (1)

and the solution of the differential equation (1) is given by

x(t) = eAtx0 +
∫ t

0

eA(t−τ)Bu(τ )dτ (2)

y(t) = Cx(t) + Du(t), (3)

y(kT ) is represented by

x(kT ) = eAkTx0 +
∫ kT

0

eA(kT−τ)Bu(τ )dτ (4)

y(kT ) = Cx(kT ) + Du(kT ). (5)

Next, let consider the output at time t = (k + 1)T . The output at the instance is similarly obtained as

x((k + 1)T ) = eA(k+1)Tx0 +
∫ (k+1)T

0

eA((k+1)T−τ)Bu(τ )dτ (6)

y((k + 1)T ) = Cx((k + 1)T ) + Du((k + 1)T ). (7)

From this equations, we can easily obtain a recursive representation of x(kT ) as follows. Since

x((k + 1)T ) = eAT eAkTx0 + eAT
∫ kT

0

eA(kT−τ)Bu(τ )dτ

+
∫ (k+1)T

kT

eA((k+1)T−τ)Bu(τ )dτ (8)

and u(t) is u(kT ) over[kT, (k + 1)T ), we have

x((k + 1)T ) = eATx(kT ) +
∫ (k+1)T

kT

eA((k+1)T−τ)Bu(τ )dτ. (9)

Moreover, the second term in the above equation can be modified as∫ (k+1)T

kT

eA((k+1)T−τ)Bu(τ )dτ =
∫ T

0

eAτdτBu(kT ). (10)

If we define the following constant matrices;

Φ := eAT Γ :=
∫ T

0

eAτdτB, (11)
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y(kT ) can be represented using(x(kT ), u(kT )) as

x((k + 1)T ) = Φx(kT ) + Γu(kT ) (12)
y(kT ) = Cx(kT ) + Du(kT ). (13)

This difference equation is a discrete time state space representation of the continuous system. Please notice that
once the sampling interval T is given, the matrices, (Φ,Γ), are calculated as constant matrices. As in the preceding
procedure, determination of the discrete time state space representation from the continuous one is called discretization
of a system. If we should know the state value during the interval, it can be determined by

x(kT + τ ) = eAτx(kT ) +
∫ τ

0

eArdrBu(kT ), .(0 ≤ τ < T ) (14)

y(kT + τ ) = Cx(kT + τ ) + Du(kT ) (15)

z transformation and pulse transfer function

In the previous section we have learned how to obtain a discrete time state space representation form the continuous
one. Of course, we can use the representation for controller design, however, sometimes input-output property is
required. In a continuous time case, input-output relationship is represented by a transfer function using Laplace
transformation. In the discrete time case, the Laplace transformation is replaced by z-transformation. Before we
mention the input-output relationship of the system, how to solve difference equations using z-transformation, which
is similar to how to solve differential equations using Laplace transformation. The z-transformation is define as follow.

[Definition]　 z transformation of a sequence {f(kT )}

Z{f(kT )} := F (z) =
∞∑
k=0

f(kT )z−k (16)

Properties of z transformation can be listed as follows;

1. (Linearity)
Z{c1f1 + c2f2} = c1Z{f1} + c2Z{f2}

2. (Shift)

Z{f((k + n)T )} = zn(Z{f} −
n−1∑
l=0

f(lT )z−l)

Z{f((k − n)T )} = z−nZ{f}

3. (Convolution)
Z{f ∗ g} = Z{f} · Z{g}

ただし、

f ∗ g :=
k∑
l=0

f((k − l)T )g(lT )

4. (Inverse formula)

f(kT ) =
1
2πj

∮
F (z)zk−1dz

5. (Initial value theorem)
f(0) = lim

z→∞F (z)
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6. (Final value theorem)
f(∞) = lim

z→1
(1− z−1)F (z)

7. (Parseval theorem)
∞∑
k=0

f2(kT ) =
1
2π

∫ π

−π
|F (ejθ)|2dθ

As a transfer function is defined as a fraction of a Laplace transformation of output signal and a Laplace transformation
of input signal, a pulse transfer function of a system is defined as a fraction of a z-transformation of output sequence
and z-transformation of input sequence. The pulse transfer function can be also obtained using a discrete time state
space representation. That is, z-transforming (12) as

zX(z) − zx(0) = ΦX(z) + ΓU (z), (17)

if we assume x(0) = 0, we have
X(z) = (zI −Φ)−1ΓU (z).

Therefore, the pulse transfer function is determined as

H(z) = C(zI −Φ)−1Γ + D. (18)

[Example] Discretize the following LTI system and obtain its pulse transfer function.

ẋ =
[
0 1
0 0

]
x +

[
0
1

]
u

y = [1 0]x

Since the matrix A has a special property, (Φ,Γ) can be easily determined as follows;

Φ = I + A+ 0 + . . . =
[
1 T
0 1

]
,

Γ =
∫ T

0

eAτB =
∫ T

0

I +AτdτB =
[

1
2
T 2

T

]
.

From the definition of a pulse transfer function, the corresponding pulse transfer function is calculated as

H(z) = [1 0]
(
zI −

[
1 T
0 1

])−1 [ 1
2T

2

T

]
=

T 2(z + 1)
2(z − 1)2 .

Pulse transfer function and its frequency property

In the previous section, pulse transfer function is introduced in order to characterize input-output relationship of
discrete time systems. Since the pulse transfer function is not defined based on continuous time t, it has no relationship
to the sampling interval T . If we design a controller for continuous time plant using a sampler and holder, frequency
property of the controlled system is very important, however, the frequency property is not linked directly so far. In
this section, how to extract the frequency property from the pulse transfer function is discussed.

As is well known that if we inject a input:
u(t) = sin(ωt) (19)

into a stable continuous LTI system, the output of the system can be represented byれる。

y(t) = |H(jω)|sin(ωt + ArgH(jω)) (20)
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after a transient, where H(s) is the transfer function of the system. In this case H(jω) is referred to a frequency
transfer function. This equation means that the frequency transfer function is obtained by substituting jω into s if
the plant is stable. H(jω) contains information how the magnitude and phase of the injected sinusoidal signal whose
natural frequency is ω are influenced by the system.

Next, we consider how to obtain the frequency transfer function in a discrete time case. Let consider to inject a
input signal:

u(kT ) = sinωkT (21)

into a system whose pulse transfer function is H(z). Using z-transformation, Y (z) is obtained as follows:

U (z) = Z{u(kT )} =
zsinωT

z2 − 2zcosωT + 1 (22)

Y (z) = H(z)U (z). (23)

Using the inverse formula, the inverse transform of Y (z) is calculated by

y(kT ) = Z−1{H(z) zsinωT

z2 − 2zcosωT + 1}

=
1
2πj

∮
H(z)

zksinωT

z2 − 2zcosωT + 1dz. (24)

If H(z) does not have any pole on a unit circle, the output is calculated as

y(kT ) =
H(ejωT )ejωkT

2
− H(e−jωT )e−jωkT

2
+
∑
|α|<1

R(α)αk. (25)

Moreover, if k is large enough, a third term in the above equation vanishes, we have

y(kT ) = |H(ejωT )|sin(ωkT +ArgH(ejωT )). (26)

From this equation, we can see that the frequency transfer function of the pulse transfer function can be obtained by
substituting ejωT into z. Moreover, if we substitute ω + ωs in stead of ω, where

ωs =
2π
T

, (27)

the value does not change since
H(ej(ω+ωs)T ) = H(ejωT ). (28)

Therefore, the frequency property of H(z) is a periodic function whose period is ωs. This property is due to that if
we inject a signal:

u(t) = sin(ω + ωs)kT (29)

into a sample and holder, the signal can not be distinguished from u(t) = sinωkT by sampling operation. This kind of
phenomena by sampling is referred to aliasing which has strong relationship to well known sampling theorem, however,
it is not discussed here.
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Chapter 1

State Space Representation, Shift
Operators, and DARMA Model

We are now familiar to state space representation and its pulse transfer function. The pulse transfer function represents
input-output relationship without the intermediate variables, states, in z domain. Now we consider a time domain
representation of the input-output relationship of the systems.

1.1 Forward and Backward Shift Operators

Forward and backward operators, q and q−1 are defined as follows:

qy(k) = y(k + 1) (k ≥ 0) (1.1)

q−1y(k) =
{

y(k − 1) (k ≥ 1)
0 (k = 0) (1.2)

and consequently,

qiy(k) = y(k + i) (k ≥ 0) (1.3)

q−iy(k) =
{

y(k − i) (k ≥ i)
0 (0 ≤ k < i) (1.4)

Please note that the shift operator q seems to be very similar to z transformation, however, it has very different property
as they ’ignore’ initial value of the signal though it is always taken account into in the z transformation.(That is, if
we ignore the initial value, q is equivalent to z in a form.)

In general input-output relationship of time invariant linear system can be represented as

P (q)z(k) = Q(q)u(k), k ≥ 0 (1.5)
y(k) = R(q)z(k), z(k) ∈ Rl, u(k) ∈ Rm y(k) ∈ Rp (1.6)

using the forward shift operator q where z(k) is a ’partial’ state. To ensure existence and uniqueness of the solution
to (1.6), we require P (q) to be square and nonsingular for almost q.

The difference operator representation includes the state space representation as a special case when

P (q) = qI − A (1.7)
Q(q) = B (1.8)
R(q) = C (1.9)
z(k) = x(k) (1.10)

6



1.1.1 Left Difference Operator Representation and Observer Form

As a special case of the difference operator representation, left difference operator representations are given by

DL(q)z(k) = NL(q)u(k), k ≥ 0 (1.11)
y(k) = z(k), (1.12)

or equivalently,
DL(q)y(k) = NL(q)u(k). (1.13)

If we consider a single-input single-output (scaler) system whose pulse transfer function H(z):

H(z) =
b1z

n−1 + b2z
n−2 + · · ·+ bn

a0zn + a1zn−1 + · · ·+ an−1z + an
, (1.14)

then ignoring the initial response we have
Y (z) = H(z)U (z). (1.15)

Therefore, we have

(a0z
n + a1z

n−1 + · · ·an−1z + an)Y (z) = (b1zn−1 + b2z
n−2 + · · ·+ bn)U (z), (1.16)

and since now z can be considered as a forward shift operator, it can be represented as

(a0q
n + a1q

n−1 + · · ·+ an−1q + an)y(k) = (b1qn−1 + b2q
n−2 + · · ·+ bn)u(k) (1.17)

in the time (index) domain k. From the pulse transfer function we have derived a particular left difference operator
representation of the system where

DL(q) = a0q
n + a1q

n−1 + · · ·+ an−1q + an (1.18)
QL(q) = b1q

n−1 + b2q
n−2 + · · ·+ bn. (1.19)

Once we have a left difference operator representation of the system, a special state space representation can be
easily obtained as follows. In (1.17) operating shift operator and shifting the index, we have

y(k) =
a1

a0
y(k − 1) + · · ·+ an

a0
y(k − n) +

b1
a0

u(k − 1) + · · ·+ bn
a0

u(k − n), (1.20)

where we assume a0 �= 0. Introducing new variables so that the right-hand side of the definition of the new variable
just contains the term whose index is just smaller than 1, i.e.

y(k) = −a1

a0
y(k − 1)− · · · − an

a0
y(k − n) +

b1
a0

u(k − 1) + · · ·+ bn
an

u(k − n) (1.21)

=
a1

a0
y(k − 1) + r1(k − 1) + b1

a0
u(k − 1) (1.22)

r1(k) = −a2

a0
y(k − 1) + r2(k − 1) + b2

a0
u(k − 1) (1.23)

· · · (1.24)

rn−1(k) = −an
a0

y(k − 1) + bn
a0

u(k − 1) (1.25)

Now we define a state vector as
x(k) = [y(k), r1(k), · · · , rn−1(k)]T (1.26)
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leading to the following state state representation:

x(k + 1) =




−a1a0 1 . . 0
−a2a0 0 1 . 0

· · · 0
−an−1

a0
· · · 1

−an

a0
0 . 0 0


x(k) +




b1
a0
.

.
bn
a0


 u(k) := Aox(k) + bou(k) (1.27)

y(k) = [1, 0, · · · , 0]x(k) := cox(k) (1.28)

which is called observer form or observable canonical form. The above representation is called observer form since
an observer can be easily designed based on the observer form. Let x̂ be the estimated state of the system and the
observer dynamics is given by

x̂(k + 1) = Aox̂(k) + bou(k)− ko(ŷ(k)− y(k)) (1.29)

where
ko = [k0, k1, · · · , kn]. (1.30)

Then the error system of the state is geven by

x̃(k + 1) = (Ao − boko)x̃(k), x̃ := x̂(k)− x(k). (1.31)

Since we have

Ao −Koco =




−k1 − a1
a0

1 . . 0
−k2 − a2

a0
0 1 . 0

· · · 0
−kn−1 − an−1

a0
· · · 1

−kn − an

a0
0 . 0 0


 , (1.32)

and det(zI − (Ao −Koco)) = zn + (k1 + a1
a0
)z + · · ·+ kn + an

a0
, {ki} is easily determined if the desired pole allocation

of the observer is assigned. Please note here that once the observer form is obtained, the backword operations in the
preceding discussion gives the representation of (1.20). In the preceding discussion, the observer form was derived
from a transfer function, however, it will be dangerous for the design, especially for servo controller design, since
uncontrollable modes may disappear in the model. For the controller design purpose, the state space model should be
transformed into observer form from the original state space model but from the transfer function. See the details in
an example below.

1.1.2 DARMA Model

From the above derivation, it has been seen that if the expression as in (1.20) is given, the other expressions can easily
obtained. The expression itself, however, has very natural meaning how the current output is influenced by the past
output and the input. The model like (1.20) is called DARMA model. The name DARMA stands for Deterministic
Auto Regressive Moving Average where ’deterministic’ means that there is no stochastic term in the model. ARMA
is a model of a stochastic system and is also combination of AR and MA. If the ARMA model has no input u(k) but
stochastic signal ω(k), i.e.

y(k) =
a1

a0
y(k − 1) + · · ·+ an

a0
y(k − n) + c1ω(k − 1) + · · · (1.33)

it is called AutoRegressive model. If ARMA model has only stochastic term, i.e.

y(k) = c1ω(k − 1) + · · · (1.34)

it is called a moving average model. If the right-hand side of the equation contains all terms, i.e.

y(k) =
a1

a0
y(k − 1) + · · ·+ an

a0
y(k − n) +

b1
a0

u(k − 1) + · · ·+ bn
an

u(k − n) + c1ω(k − 1) · · · , (1.35)
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it is called ARMAX model where ’X’ stands for auXiliary input u(k) and ARMAX model is just a DARMA model
with stochastic signal ω(k).

In general DARMA model is defined by

A0y(k) = −
n1∑
j=1

Ajy(k − j) +
m1∑
j=0

Bju(k − j − d), k ≥ 0 (1.36)

where y(k) ∈ Rp, u(k) ∈ Rm, A0 is square and nonsingular, Aj, Bj are appropriate matrices, and d stands for time
delay.

Using the backword shift operator q−1, (1.36) can be expressed as

A(q−1)y(k) = B(q−1)u(k) (1.37)

where

A(q−1) = A0 +A1q
−1 + · · ·+ An1q

−n1 (1.38)
B(q−1) = (B0 + B1q

−1 + · · ·+Bm1 q
−m1)q−d (1.39)

As shown in the previous section, this model is just one of a left difference operator representation.
Moreover, (1.36) can be expressed as

y(k) = φT (k)θ0, (1.40)

where θT0 ∈ Rp×ν is a parameter matrix (low vector for scalar case) which contains elements of Aj and Bj , φ ∈
Rν×n1+m1 is called a regression matrix (regression vector for scalar case) which contains {y(k−1), · · · , y(k−n1), u(k−
d), · · · , u(k −m1 − d)}. (Note that in the scalar case, θT0 φ = φT θ0.)

[Example]
Let consider a system ,which is an one-step delay element with constant disturbance, given by the following

difference equations:

η(k + 1) = η(k)
z(k + 1) = u(k)

y(k) = z(k) + η(k)

The problem here is to obtain a DARMA model for the system. Introducing a state vector x(k) as

x(k) = [η(k), z(k)]T ,

it can be represented as

x(k + 1) =
[
1 0
0 0

]
x(k) +

[
0
1

]
u(k)

y(k) = [1, 1]x(k).

Using the PBH(Popov-Belevitch-Hautus) tests, i.e.,

rankC = rank[b, Ab] = 1 (1.41)
rankNT = rank[cT , ATcT ] = 2, (1.42)

it can be seen that the system is not completely controllable but completely observable. Then the all state will give
influences to the output.

First we will consider a ’wrong’ derivation. Let consider a pulse transfer function H(z). The transfer pulse function
is given by

H(z) = c(zI − A)−1b = [1 1]

[
z 0
0 z − 1

]
z(z − 1)

[
0
1

]
=

z − 1
z(z − 1) =

1
z
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As shown in the above equation, the uncontrollable mode z = 1 is cancelled out. If we use this transfer function to
obtain the DARMA model, we have

y(k) = u(k − 1).
Since this model does not include the information of the disturbance η(k), controllers based on this model may cause
an offset in the output if η(0) �= 0.

The ’right’ procedure is given as follows. Using a dual procedure given in Furuta, we can employ a coordinate
transformation matrix T as

T =
[
0 1
−1 1

]
,

and the equivalent system is given by

x̄(k + 1) =
[
0 0
1 1

]
x̄(k) +

[ −1
1

]
u(k)

y(k) = [0 1]x̄.

Furthermore, reversing the order of the elements in x̄ gives

x̄(k + 1) =
[
1 1
0 0

]
x̄(k) +

[
1
−1

]
u(k)

y(k) = [1 0]x̄.

From this observer form we directly obtain the following DARMA model:

y(k) = y(k − 1) + u(k − 1)− u(k − 2). (1.43)

Moreover we have a form using a regressor vector as

y(k) = [y(k − 1) u(k − 1) u(k − 2)]

 1

1
−1


 = [1 1 − 1]


 y(k − 1)

u(k − 1)
u(k − 2)




Of course in this case, since we know that the system is completely observable, we can derive the above DARMA
model from the transfer function without the cancellation.
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Chapter 2

Identification of Linear Discrete Time
Systems

2.1 Projection Algorithm

Suppose that a scalar discrete time system is represented by the following equation:

y(k) = φT (k − 1)θ0 (2.1)

where φT (k − 1) is a regression vector (matrix) and θ0 is a true parameter vector as :

φT (k − 1) := [y(k − 1), · · · , y(k − n), u(k − 1− d), · · · , u(k − l − d)] , d = 1 (2.2)
θT0 := [θ1, · · · , θn+l] . (2.3)

The projection algorithm for this system is given by the following iteration.

θ̂(k) = θ̂(k − 1) + aφ(k − 1)
c+ φT (k − 1)φ(k − 1)

[
y(k) − φT (k − 1)θ̂(k − 1)

]
(2.4)

where a, c are scalar constants satisfying

c > 0
0 < a < 2.

Now we define the parameter error vector and error signal as

θ̃(k) := θ̂(k)− θ0 (2.5)

e(k) := y(k) − φT (k − 1)θ̂(k − 1)
= −φT (k − 1)θ̃(k − 1) (2.6)

then we have the following properties about the projection algorithm.
[Lemma]

1.
‖θ̂(k) − θ0‖ ≤ ‖θ̂(0)− θ0‖, k ≥ 1 (2.7)

2.

lim
N→∞

N∑
k=1

e2(k)
c+ φT (k − 1)φ(k − 1) < ∞ (2.8)

and
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(a)

lim
k→∞

e(k)
[c+ φT (k − 1)φ(k− 1)]1/2 = 0 (2.9)

(b)

lim
N→∞

N∑
k=1

φT (k − 1)φ(k − 1)e2(k)
c+ φT (k − 1)φ(k − 1) < ∞ (2.10)

(c)

lim
N→∞

N∑
k=1

‖θ̂(k)− θ̂(k − 1)‖2 < ∞ (2.11)

(d)

lim
N→∞

N∑
k=M

‖θ̂(k)− θ̂(k −M )‖2 < ∞, 1 ≥ M < ∞ (2.12)

(e)
lim
k→∞

‖θ̂(k) − θ̂(k −M )‖2 = 0 (2.13)

[Note]
The last equation does not mean that θ̂(k) converges to a parameter vector. Consider a sequence {Sk} given by

Sk :=
k∑
i=1

1
i
.

We can check easily that limk→∞ |Sk − Sk−M | = 0 but limk→∞ Sk =∞.
[Proof]

1. Subtracting θ0 from both sides of (2.4), we have

θ̃(k − 1) = θ̃(k) − aφ(k − 1)
c + φT (k − 1)φ(k − 1)φ

T (k − 1)θ̃(k − 1). (2.14)

Using (2.6), it follows that

‖θ̃(k)‖2 − ‖θ̃(k − 1)‖2 = a

[
−2 + aφT (k − 1)φ(k − 1)

c+ φT (k − 1)φ(k − 1)
]

e2(k)
c + φT (k − 1)φ(k − 1) . (2.15)

On the other hand, from the condition 0 < a < 2 and

a

[
−2 + aφT (k − 1)φ(k − 1)

c+ φT (k − 1)φ(k − 1)
]

< a(a− 2) < 0, (2.16)

(2.7) is derived.

2. Adding both sides of (2.15) from j=1 to k, we have

‖θ̃(k)‖2 = ‖θ̃(0)‖2 +
k∑
j=1

a

[
−2 + aφT (k − 1)φ(k− 1)

c+ φT (k − 1)φ(k − 1)
]

e2(k)
c+ φT (k − 1)φ(k − 1) . (2.17)

On the other hand, from the condition of a, the following inequality is satisfied.

‖θ̃(k)‖2 ≤ ‖θ̃(0)‖2 + a(a − 2)
k∑
j=1

e2(k)
c+ φT (k − 1)φ(k − 1) . (2.18)
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Therefore,

a(2− a)
k∑
j=1

e2(k)
c + φT (k − 1)φ(k − 1) ≤ ‖θ̃(0)‖2 − ‖θ̃(k)‖2, (2.19)

and taking k → ∞ leads to (2.8).

(a) (2.9) is obvious from (2.8).

(b) From

e2(k)
c+ φT (k − 1)φ(k− 1) =

(c+ φT (k − 1)φ(k − 1)e2(k)
(c + φT (k − 1)φ(k − 1))2 ≥ φT (k − 1)φ(k − 1))e2(k)

(c+ φT (k − 1)φ(k − 1))2 , (2.20)

the relation is obvious.

(c) (2.4) and (2.10) lead to the end.

(d) From
‖θ̂(k)− θ(k −M )‖2 = ‖θ̂(k)− θ(k − 1) + θ(k − 1) − · · ·+ θ(k −M + 1)− θ(k −M )‖2

and
‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2),

we have

‖θ̂(k)−θ(k−M )‖2 ≤ C(M )(‖θ̂(k)−θ(k−1)‖2+‖θ(k−1)−· · ·+‖θ(k−M +1)−θ(k−M )‖2), C(M ) < ∞,

and (2.12) is derived.

(e) It is obvious from(2.12).

2.2 Least Square Method

If we use the projection algorithm when noises are present at system equation and in the measurements, the parameter
vector does not converge to a constant value and are changing due to the noises. The least square method, however,
will give a true value in that case because of the averaging property.

The algorithm is given by the following iteration:

θ̂(k) = θ̂(k) +
P (k − 2)φ(k − 1)

1 + φT (k − 1)P (k− 2)φ(k − 1)e(k − 1) (2.21)

P (k − 1) = P (k − 2)− P (k− 2)φ(k − 1)φT (k − 1)P (k− 2)
1 + φT (k − 1)P (k− 2)φ(k − 1) , (2.22)

where P (−1) is an arbitrary positive definite matrix P0.
Before considering the above algorithm, we have the following lemma.

[Lemma]（Matrix Inversion Lemma）
Assume A is nonsingular and A +BC is also nonsingular, the following equality is satisfied:

(A+ BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1 (2.23)

[Proof] Multiplying A+ BC to both sides and observe that results become identity matrix.
If P−1(k) satisfies the following equation:

P−1(k − 1) = P−1(k − 2) + φ(k − 1)φT (k − 1)a(k − 1), (2.24)
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the above lemma shows the following equation:

P (k− 1) = P (k − 2)− P (k− 2)φ(k − 1)φT (k − 1)P (k − 2)a(k − 1)
1 + φT (k − 1)P (k− 2)φ(k − 1)a(k − 1) (2.25)

P (k − 1)φ(k − 1) =
P (k − 2)φ(k − 1)

1 + φT (k − 1)P (k − 2)φ(k − 1)a(k − 1) . (2.26)

The least square algorithm is derived considering the following function as the criterion function.

JN =
1
2

N∑
k=1

‖y(k) − φT (k − 1)θ̂(N )‖2 +
1
2
(θ̂(N ) − θ̂(0))TP−1

0 (θ̂(N )− θ̂(0)) (2.27)

Now we define YN and ΦN using the observed output and injected input as

Y TN := [y(1), · · · , y(N )] (2.28)
ΦN−1 := [φ(0), · · · , φ(N − 1)]T . (2.29)

Using the above definitions, we have
 e(1)

.
e(N )


 =


 y(1)

.
y(N )


−


 φT (0)

.
φT (N − 1)


 θ̂(k − 1)

= YN − ΦN−1θ. (2.30)

Using this relationship (2.27) can be expressed as

JN =
1
2
(YN −ΦN−1θ̂(N ))T (YN − ΦN−1θ̂(N )) +

1
2
(θ̂(N )− θ̂(0))TP−1(0)(θ̂(N ) − θ̂(0)). (2.31)

Using the expression, the optimal estimated value θ̂(N ) is given taking the the partial derivative of the criterion
function with the argument as

∂JN

∂θ̂(N )
= 0. (2.32)

Therefore, we have
−ΦTN−1(YN − ΦN−1θ̂(N )) + P−1(0)(θ̂(N ) − θ̂(0)) = 0. (2.33)

Then θ̂(N ) is expressed by

θ̂(N ) =
[
ΦTN−1ΦN−1 + P−1(0)

]−1
(
P−1

0 θ̂(0) + ΦTN−1YN

)
= P (N − 1)

(
P−1

0 θ̂(0) + ΦTN−1YN

)
, (2.34)

where
P−1(N − 1) = ΦTN−1ΦN−1 + P−1

0 . (2.35)

The above equation can be also expressed as

P−1(N − 1) = ΦTN−1ΦN−1 + P−1(0)

=
[
φ(0) · · · φ(N − 1) ]


 φT (0)

.

φT (N − 1)


+ P−1

0 (2.36)

=
[
ΦN−2 φ(N − 1) ] [ ΦTN−2

φT (N − 1)
]
+ P−1

0

= ΦN−2ΦTN−2 + P−1
0 + φ(N − 1)φT (N − 1)

= P−1(N − 2) + φ(N − 1)φT (N − 1). (2.37)
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On the other hand, θ̂(N ) satisfies the following equation:

θ̂(N ) = P (N − 1)(P−1
0 θ̂(0) + ΦN−2YN−1 + φ(N − 1)y(N )), (2.38)

and using (2.34), we have

= P (N − 1)(P−1(N − 2)θ̂(N − 1) + φ(N − 1)y(N ))
= P (N − 1)(P−1(N − 1) − φ(N − 1)φT (N − 1))θ̂(N − 1) + P (N − 1)φ(N − 1)y(N )
= θ̂(N − 1) + P (N − 1)φ(N − 1)(y(N ) − φT (N − 1)θ̂(N − 1)). (2.39)

Furthermore, using (2.26), we have

= θ̂(N − 1) + P (N − 2)φ(N − 1)
1 + φT (N − 1)P (N − 2)φ(N − 1)(y(N ) − φT (N − 1)θ̂(N − 1)), (2.40)

and (2.21) is derived. (2.22) is obvious from the matrix inversion lemma.
The least square algorithm has the following properties.

[Lemma]

1.
‖θ̂(k)− θ0‖2 ≤ κ1‖θ̂(0)− θ0‖2, k ≥ 1 (2.41)

where

κ1 = Cond(P−1
0 ) :=

λmax(P−1
0 )

λmin(P−1
0 )

2.

lim
N→∞

N∑
k=1

e2(k)
1 + φ(k − 1)P (k − 2)φT (k − 1) < ∞ (2.42)

lim
k→∞

‖θ̂(k) − θ̂(k −M )‖ = 0, for M < ∞ (2.43)

[Proof] Omitted.
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Chapter 3

Linear Diophantine Equation and
Adaptive Predictor

3.1 Linear Diophantine Equation

Suppose that a、b、c and d are polynomial of d. （In the analysis of the control system we consider d as d = q−1.）
The following equation in terms of x and y expressed by (3.1) is called Linear Diophantine Equation.

ax + by = c (3.1)

A fundamental property about the Diophantine equation is given by the following theorem.
[Theorem]

Suppose that (a, b) is the largest common factor of a and b. The Diophantine equation (3.1) has a solution if and
only if (a, b) is a common factor of c. We denote the condition as

(a, b)|c. (3.2)

[Proof]
（Only if）

Assume that x0 and y0 are the solution of (3.1). If g = (a, b), we have

a = ga0, b = gb0, (3.3)

therefore the equation can be represented as

ax+ by = g(a0x + b0) = c, (3.4)

and the only if part is proven.
（If）

Assume that (a, b)|c and c = gc0. From the fundamental property of polynomial we know that there exist polyno-
mials p and q satisfying

ap + bq = g. (3.5)

From the above equation, we have

c = gc0 = a(pc0) + b(qc0) = ax + by, (3.6)

where x = pc0 and y = qc0. Therefor, the equations has the solution.
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In the above theorem, we just consider polynomial case. We can extend the result to matrix case. In the matrix
case, we have, however, two equations equivalent to (3.1) since matrix multiplication does not commute. The equations
are given by

XA + Y B = C (3.7)
AX + BY = C, (3.8)

where A,B,C,X, Y are all matrices whose elements are all polynomials of d. Concerning to the above equations, we
have the following theorem similar to the above theorem.
[Theorem]

Assume that G is the largest right common factor of A and B. (3.7) has a solution if and only if G is also the right
common factor of C. （For (3.8), we simply replace right common factor with left common factor.）

From this theorem, in particular if A and B are right (left) coprime, there exist a solution, where right coprimeness
(left coprimeness) of A and B means that the largest right (left) common factor is unimodular matrix. We say a
matrixM is unimodular if the matrix has inverse in the set of M . In our case, the condition is equivalent to that the
determinant of the polynomial matrix is non- zero constant.

The right and left coprimeness can be easily checked by the following conditions. Assume that A and B are
polynomial matrices whose sizes are p× n and p×m. They are left coprime each other if

rank[A B] = p. (3.9)

Assume also A and B are polynomial matrices whose sizes are n× p and m× p. They are right coprime each other if

rank

[
A
B

]
= p. (3.10)

As an example, we consider (3.8) where

A =
[
1 1
0 1

]
(3.11)

B =
[
1− d 2d
1− d d

]
(3.12)

C =
[
1− d
d2

]
. (3.13)

We can easily check that

rank

[
A
B

]
= 2 (3.14)

it can be seen that they are right coprime and the equation should have a solution. The one of the solutions is given
by

X =
[
1− d− d2

d2

]
(3.15)

Y =
[
0
0

]
. (3.16)

3.2 d-Step Ahead Predictor

Now we consider a system represented by the following DARMA (Deterministic Auto Regressive Moving Average)
model :

A(q−1)y(k) = B(q−1)u(k), (3.17)
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where

A(q−1) = I + A1q
−1 + · · · + Anq

−n (3.18)
B(q−1) = q−d(B0 + B1q

−1 + · · · + Alq
−l)

= q−dB′(q−1) (3.19)

The a d-step ahead prediction can be expressed by

y(k + d) = α(q−1)y(k) + β(q−1)u(k). (3.20)

where

α(q−1) = G(q−1) (3.21)
β(q−1) = F (q−1)B′(q−1), (3.22)

and F and G are the solution of the following Diophantine equation:

F (q−1)A(q−1) + G(q−1)q−d = I. (3.23)

For the above equation, it can be easily understood that it has a solution if we consider A = A(q−1) and B = q−d

in the Diophantine equation. Now assume that one of the solutions can be represented as

F (q−1) = I + F1q
−1 + · · · + Fd−1q

−d+1 (3.24)
G(q−1) = G0 + G1q

−1 + · · · + Gn−1q
−n+1. (3.25)

Coefficients of Fi and Gi are easily calculated by the following iteration:

F0 = I (3.26)

Fi = −
i−1∑
j=0

FjAi−j , i = 1, ..., d− 1 (3.27)

Gi = −
d−1∑
j=0

FjAi+d−j , i = 0, ..., n− 1, (3.28)

where if Ai (i > n) does appear, we consider it as zero matrix.
[Proof]

As in the above discussion, (3.23) has a solution. Multiplying F (q−1) to (3.17) from the left, we have

FAy = FBu = Fq−dB′u
(I − Gq−d)y = Fq−dB′u

y = q−d(Gy + FB′u), (3.29)

and (3.20) is derived. Relationship of the coefficients of Fi and Gi are obtained considering the following equation:

I = (I + F1q
−1 + · · · + Fd−1q

−d+1)(I + A1q
−1 + · · · + Anq

−n) + G0q
−d + · · · + Gn−1q

−d−n+1

= I + (F1 +A1)q−1 + (F2 + F1A1 +A2)q−2 + · · · + (G0 + Ad + F1Ad−1 + · · · Fd−1A1)q−d + · · · .(3.30)

Equating the coefficients gives the relationship.
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3.3 Adaptive d-Step Ahead Predictor Using Projection Algorithm

Assume that there exists a true parameter vector θ0 giving the following equation corresponding to a definition of
φ(k).
[Assumption]

y(k + d) = φT (k)θ0 (3.31)

If a d-step ahead adaptive predictor is constructed by the following equation:

θ̂(k) = θ̂(k − 1) + φ(k − d)
c + φT (k − d)φ(k − d)

(y(k) − φT (k − d)θ̂(k − 1)) (3.32)

ŷ(k) = φT (k − d)θ̂(k − d), (3.33)

then the following properties in the lemma follows.
[Lemma]

Under the following assumptions:

1. φ(·) is compatible to the orders of the plant. That is, there exists a true parameter vector θ0 satisfying y(k+d) =
φT (k)θ0.

2. {y(k)} and {u(k)} are bounded signals,
we have

lim
N→∞

M+N∑
k=M

(y(k) − ŷ(k))2 < ∞ (3.34)

and ŷ(k)→ y(k).
[Proof]

From the properties of the parameter estimation, we have

lim
N→∞

N+M∑
k=M

[φT (k − d)θ̃(k − 1)]2
1 + φT (k − d)φ(k − d)

< ∞

lim
N→∞

N+M∑
k=M

‖θ̂(k) − θ̂(k −M )‖2 < ∞.

On the other hand, we have

e(k) := y(k) − ŷ(k) = −φT (k − d)θ̃(k − d)

= −φT (k − d)θ̃(k − 1)− φT (k − d)[θ̂(k − d)− θ̂(k − 1)], (3.35)

and

e2(k) = (φT (k − d)θ̃(k − 1))2 + 2θ̃T (k − 1)φ(k − d)φT (k − d)[[θ̂(k − d)− θ̂(k − 1)]
+ (φT (k − d)[θ̂(k − d)− θ̂(k − 1)])2
≤ 2(φT (k − d)θ̃(k − 1))2 + 2(φT (k − d)[θ̂(k − d)− θ̂(k − 1)])2
≤ 2(φT (k − d)θ̃(k − 1))2 + 2‖φT (k − d)‖2‖θ̂(k − d)− θ̂(k − 1)]‖2. (3.36)

Therefor, dividing both sides of the above equation by (1 +φT (k− d)φ(k− d)) and summing up with respect to k, we
have

N∑
k=1

e2(k)
1 + φT (k − d)φ(k− d)

≤ 2
N∑
k=1

[φT (k − d)θ̃(k − 1)]2
1 + φT (k − d)φ(k − d)

+ 2
N∑
k=1

‖φT (k − d)‖2‖θ̂(k − d)− θ̂(k − 1)]‖2

1 + φT (k − d)φ(k − d)
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≤ 2
N∑
k=1

[φT (k − d)θ̃(k − 1)]2
1 + φT (k − d)φ(k − d)

+ 2 sup
k≥1

‖φT (k − d)‖2
N∑
k=1

‖θ̂(k − d)− θ̂(k − 1)]‖2 < ∞.

(3.37)

From the assumption, ‖φ(k− d)‖2 is bounded, and we have
∑

e2(k) < ∞ , which shows the lemma.
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Chapter 4

Basic Control Method and Adaptive
Control

4.1 Basic Control Method

In this chapter we consider following two basic control algorithms:

1. One-Step Ahead Control

2. Model Reference Control

We assume that the objective plant can be expressed by (3.17).

4.1.1 One-Step Ahead Control

One-Step Ahead Control is a method that output of the plant exactly coincides with the desired signal y∗ just after
d steps where d is a delay. A basic equation for the method is d-step ahead predictor as

y(k + d) = α(q−1)y(k) + β(q−1)u(k). (4.1)

The control input is determined by reversing the equation:

y∗(k + d) = α(q−1)y(k) + β(q−1)u(k) (4.2)

namely, solving the equation in terms of u(k) as

u(k) =
1
β0

{
(β(q−1)− β0)u(k) + y∗(k + d) − α(q−1)y(k)

}
.. (4.3)

Note that the control input can be determined by the current and past output, and past input. Concerning about the
control, we have the following theorem.
[Theorem]

Using the control given by (4.3), we have

y(k) = y∗(k), k ≥ d (4.4)

and the input signal is bounded if the following conditions are satisfied.

1. zdB(z−1) does not have zeros outside of a unit circle.

2. Zeros of B′(z−1)/A(z−1) is within the unit circle.

21



3. The size of a Jordan block of B′(z−1) whose eigenvalue is on the unit circle is one.

[Proof]　 Omitted.
(Example)

Let consider the following system:

η(k + 1) = η(k) (4.5)
x(k + 1) = u(k) (4.6)

y(k) = x(k) + η(k) (4.7)

The corresponding DARMA model can be given as

y(k) = y(k − 1) + u(k − 1) − u(k − 2), (4.8)

and the polynomials A and B are given as

A(q−1) = 1 − q−1 (4.9)
B′(q−1) = 1 − q−1, d = 1. (4.10)

For this system the 1-step ahead predictor can be obtained solving the Diophantine equation as

F (q−1) = 1, G(q−1) = 1. (4.11)

Then the control input is expressed as

u(k) = y∗(k + 1) − y(k) + u(k − 1). (4.12)

4.1.2 Model Reference Control

In some cases we want to match a input-output relationship (transfer function) to a desired one repressed by a
dynamical model. The control method is called Model Reference Control. For the control we assume the following
conditions:
[Assumptions]

1. Desired property of the model is represented by

E(q−1)y∗(k) = gq−d
′
H(q−1)r(k),

where r(k), y∗(k) and g are input, output and gain, respectively.

2. E(z−1) is stable polynomial.

3. d′ ≥ d.

Before mention about the control method, we require the following lemma.
[Lemma]

The plant considered can be represented as the prediction form as

E(q−1)y(k + d) = α(q−1)y(k) + β(q−1)u(k), (4.13)

where

α(q−1) = G(q−1) (4.14)
β(q−1) = F (q−1)B′(q−1) (4.15)

and F and G are solutions of the following Diophantine equation.

E(q−1) = F (q−1)A(q−1) + G(q−1)q−d (4.16)

22



Keep the above lemma in mind, we have the following theorem.
[Theorem]

Using the following input:

β(q−1)u(k) = E(q−1)y ∗ (k + d) − α(q−1)y(k) (4.17)

= E(q−1)qd−d
′
gH(q−1)r(k) − α(q−1)y(k), (4.18)

the output of the plant will approaches to the desired one:

y(k) → y∗(k). (4.19)

[Proof]
By the determination of u(k), we have

E(q−1)y(k + d) = α(q−1)y(k) + β(q−1)u(k)
= E(q−1)y∗(k + d). (4.20)

Therefore, we have
E(q−1)(y(k + d)− y∗(k + d)) = 0, (4.21)

and the error will converge to zero because of the stability of the model.

4.2 One-Step-Ahead Adaptive Control

Let consider about adaptive version of the one-step-ahead control taking account of the parameter estimation. Before
mention the control scheme, we explain the key technical lemma to show the convergence of the adaptive method.
[Lemma]（The Key Technical Lemma)

Assume that sequences {s(k)},{σ(k)}, {b1(k)} and {b2(k)} satisfy the following conditions:

1.

lim
k→∞

s2(k)
b1(k) + b2(k)σT (k)σ(k)

= 0 (4.22)

where {s(k)},{b1(k)} are {b2(k)} are all real sequences and {σ(k)} is a vector of p× 1.
2. Uniform bounded condition:

0 < b1(k) < K ∞, 0 ≤ b2(k) < K ∞ (4.23)

is satisfied for each k ≥ 1.

3. Linear bounded condition:
‖σ(k)‖ ≤ c1 + c2 max

0≤k≤k
|s(l)| (4.24)

is satisfied where 0 < c1 < ∞ and 0 < c2 < ∞.

Under the above assumptions, we have

(i) limk→∞ s(k) = 0

(ii) {‖σ(k)‖} is bounded.

[Proof]

(a) Boundness assumption of {s(k)} shows the boundness of {‖σ(k)‖} due to (4.24). Therefore, we have limk→∞ s(k) =
0 using (4.23) and (4.22).
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(b) Assume that {s(k)} is not bounded above. There exists a sub-sequence kn of k such that

lim
n→∞ s(kn) =∞ (4.25)

and
|s(k)| ≤ |s(kn)| for k ≤ kn. (4.26)

（|s(kn)| is non-decreasing sequence with respect to n)

Consider about |s(kn)| for the sub-sequence {kn}, we have
|s(kn)|

|[b1(kn) + b2(kn)σT (kn)σ(kn)] |1/2 ≥ |s(kn)|
[K + K‖σ(kn)‖2]1/2

≥ |s(kn)|
K1/2 + K1/2‖σ(kn)‖

≥ |s(kn)|
K1/2 + K1/2(C1 + C2|s(kn)|

≥ 1
K1/2(1 + C2)/|s(kn)| + K1/2C2

. (4.27)

Therefore, we have

lim
kn→∞

|s(kn)|
[|b1(kn) + b2(kn)σT (kn)σ(kn)|] −1/2 ≥ 1

K1/2C2
. (4.28)

The above inequality contradicts the assumption, then {s(k)} should be bounded and the lemma is proven.

4.2.1 One-Step-Ahead Adaptive Control

We assume that the plant is represented by (3.17) and the following conditions are satisfied:

1. Delay time d is known.

2. Upper bounds n̄ and l̄ of n and l are known.

3. The following conditions are satisfied:

(a) zdB(z−1) has no zeros outside of a unit circle.

(b) Zeros of B′(z−1)/A(z−1) are within the unit circle.

(c) Size of Jordan block of B′(z−1) whose eigenvalue are on the unit circle is１.

We also assume that the plant can be expressed as

A(q−1)y(k) = B(q−1)u(k) (4.29)

where

A(q−1) = I + A1q
−1 + · · · + Anq

−n, n ≤ n̄ (4.30)
B(q−1) = q−d(B0 + B1q

−1 + · · · + Blq
−l), l ≤ l̄, (4.31)

and the d-step-ahead predictor is given by

y(k + d) = α(q−1)y(k) + β(q−1)u(k) = φT (k)θ0, (4.32)

where

α(q−1) = α0 + · · · + αn−1q
−(n−1) (4.33)

β(q−1) = β0 + · · · + βd+l−1q
−(d+l−1), β0 = b0 �= 0, (4.34)
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and

φT (k) = [y(k), · · · , y(k − n+ 1), u(k), · · · , u(k− d− l + 1)] (4.35)
θT0 = [α0, · · · , αn−1, β0, · · · , βd+l−1] . (4.36)

The one-step-ahead adaptive controller is given by the following theorem.
[Theorem]

Parameter estimation and the control input are determined by the following equations:

[Parameter estimation ]

θ̂(k) = θ̂(k−1) + a(k)φ(k−d)[c + φT (k−d)φ(k−d)]−1(y(k)−φT (k−d)θ̂(k−1), 0 < a(k) < 2, c > 0, (4.37)

[Control input ]
φT (k)θ̂(k) = y∗(k + d), (4.38)

which is

u(k) =
1

β̂0(k)

[
−α̂0y(k) − · · · − α̂n−1y(k − n + 1)− β̂1u(k − 1) · · · − β̂d+l−1u(k − d− l + 1) + y∗(k + d)

]
.

(4.39)
Note that usually we assume a(k) = 1, but a(k) is determined by the following equation if a(k) = 1 will make
β̂0(k) zero:

a(k) = γ, ε < γ < 2, γ �= 1 (4.40)

Using the above control method under the assumptions, we have

1. {y(k)} and {u(k)} are bounded signals.
2. limk→∞ y(k) = y∗(k)。

3. limN→∞
∑N
k=d(y(k) − y∗(k))2 < ∞.

[Proof]

Part I From the properties of the parameter estimation, we have

lim
k→∞

e(k)
[c + φT (k − d)φ(k− d)]1/2

= 0 (4.41)

lim
k→∞

‖θ̂(k) − θ̂(k − d)‖ = 0 for 0 < d < ∞ (4.42)

where
e(k) := y(k) − φT (k − d)θ̂(k − 1).

Now define ε(k) := y(k) − y∗(k), it can be represented as

ε(k) = φT (k − d)θ0 − φT (k − d)θ̂(k − d)
= −φT (k − d)θ̃(k − d), (4.43)

where
θ̃(k) := θ̂(k) − θ0.
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From the above equation, we have

−ε(k)
[c + φT (k − d)φ(k − d)]1/2

=
φT (k − d)θ̃(k − d)

[c + φT (k − d)φ(k − d)]1/2

=
φT (k − d)((θ̂(k − 1)− θ0) + (θ̂(k − d)− θ0)− (θ̂(k − 1) − θ0))

[c + φT (k − d)φ(k − d)]1/2

=
φT (k − d)θ̃(k − 1) + φT (k − d)(θ̃(k − d)− θ̃(k − 1))

[ ]1/2

=
−e(k)
[ ]1/2

+
φT (k − d)(θ̃(k − d)− θ̃(k − 1))

[ ]1/2
, (4.44)

and

lim
k→∞

−ε2(k)
[c + φT (k − d)φ(k − d)]

= 0. (4.45)

Part II We use the Key Technical Lemma. We consider s(k) = ε(k)、σ(k) = φ(k − d)、b1(k) = c、b2(k) = 1 in
the lemma and the first condition of the Lemma is satisfied and the second condition is also met. Finally, let
consider about the third one.

From the assumption of the plant, we have

|u(j − d)| ≤ m3 + m4 max
1≤l≤k

|y(k)| for 1 ≤ j ≤ k, 0 < m3,m4 < ∞. (4.46)

Therefore, taking the property of the elements of φ(k − d) into account, we have

‖φ(k − d)‖ ≤ p{m3 + max(1,m4) max
1≤l≤k

|y(k)|}. (4.47)

On the other hand, we have

|ε(k)| ≥ |y(k)| − |y∗(k)| ≥ |y(k)| − m1, m1 := max|y∗(k)|. (4.48)

Therefore, we have

‖φ(k − d)‖ ≤ p{m3 + max(1,m4) max
1≤l≤k

(|ε(l)|+m1)}
= c1 + c2max1≤l≤k|ε(l)|, 0 ≤ c1 < ∞, 0 < c2 < ∞, (4.49)

and the third condition is satisfied. Then from the key technical lemma, it follows that ε(k) → 0 and the
boundnesses of y(k) and u(k) from the boundness of ε(k) and (4.46). Also form (4.44), we have

ε2(k)
[ ]

≤ 2

{
e2(k)
[ ]

+
‖φT (k − d)(θ̃(k − d)− θ̃(k − 1)‖2

[ ]

}
(4.50)

and

lim
N→∞

N∑
k=d

ε2(k) < ∞ (4.51)

summing up both sides of the above inequality from k = d to N .
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Chapter 5

The Kalman Filter and Minimum
Variance Control

5.1 The Kalman Filter

5.1.1 Minimum Variance Estimator

Assume that there are two stochastic variables, X and Y , and we know some stochastic properties of them. In that
situation we want to estimate X based on the observation of Y . That is, assume g(Y ) is a function of the observation
Y and we want to find g() such that

ming(Y )E{||g(Y )−X||2} (5.1)

This g(Y ) is called minimum variance estimator of X.
First notice that

E{f(X,Y )} =
∫ ∫

f(x, y)p(x, y)dxdy =
∫ ∫

f(x, y)p(x|y)dxp(y)dy
= E{E{f(X,Y )|Y }}. (5.2)

Hence if we consider f(X,Y ) is equal to ||g(Y )−X||2, we have

E{||g(Y )−X||2} = E{E{||g(Y ) −X||2|Y }}
= E{E{||g(Y ) −E{X|Y }+E{X|Y } −X||2|Y }} (5.3)

Since

E{E{(g(Y ) −E{X|Y })(E{X|Y } −X)|Y }} = E{(g(Y ) −E{X|Y })E{(E{X|Y } −X)|Y }} (5.4)
= E{(g(Y ) −E{X|Y })(E{X|Y } −E{X|Y })} = 0, (5.5)

we have
E{||g(Y ) −X||2} = E{E{||g(Y )− E{X|Y }||2}+E{||E{X|Y } −X||2}|Y }. (5.6)

Therefore, the minimum variance estimator is given by the conditional mean as

g(Y ) = E{X|Y }. (5.7)

Note that the above result is not affected by the property of the distribution function. In practice, it is very difficult to
obtain the conditional mean in general , however, it is easily calculated if two variables are Gaussian as in eq. (5.19).
In that equation we consider X1 is the estimated variable and X2 is an observed data.
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5.1.2 Preliminary

In order to explain how to derive the Kalman filter (Minimum Variance Estimator) we requires some basic matrix
calculation and the properties of multi dimensional Gaussian distribution. The properties are shown in this section.
First we consider a matrix Σ given by

Σ =
[
Σ11 Σ12

ΣT12 Σ22

]
, ΣT = Σ (5.8)

For this Σ we have the following formula:

1. If Σ22 is non-singular and Σ11 −Σ12Σ−1
22 Σ

T
12 is also non-singular, the the inverse of Σ is given by

Σ−1 =
[

X−1 −X−1Y
−(X−1Y )T Z−1 + Y TX−1Y

]
(5.9)

where

X = Σ11 − Σ12Σ−1
22 Σ

T
12

Y = Σ12Σ−1
22

Z = Σ22

2.
det(Σ) = det(X)det(Z) (5.10)

[Proof] Please note that we can factorize Σ into

Σ =
[

In Σ11Σ−1
22

0 Im

] [
Σ11 − Σ12Σ−1

22 Σ
T
12 0

Σ21 Σ22

]
. (5.11)

From this equation, two properties above are easily derived.

As you might know that a n dimensional Gaussian probability density function whose mean is µ and whose
covariance matrix is Σ is given by

p(X) =
1

(2π)n/2(det(Σ))1/2
exp−

1
2 (X−µ)T Σ−1(X−µ). (5.12)

where

X =




ξ1
ξ2
·
ξn




Note that from the property of the probability desity function, we have∫ ∞

−∞
exp−

1
2 (X−µ)T Σ−1(X−µ)dξ = (2π)n/2(det(Σ))1/2. (5.13)

Suppose X1 ∈ Rn1 and X2 ∈ Rn2 and the joint probability density function (p.d.f.) is given by

p(
[

X1

X2

]
)(= p(X1, X2)) =

1
(π)(n1+n2)/2(det(Σ))1/2

exp
− 1

2

[
X1 − µ1

X2 − µ2

]T[ Σ11 Σ12

ΣT12 Σ22

]−1[
X1 − µ1

X2 − µ2

]
. (5.14)
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In order to compute a conditional p.d.f., we modify the exponent as[
X1 − µ1

X2 − µ2

]T [ Σ11 Σ12

ΣT12 Σ22

]−1 [
X1 − µ1

X2 − µ2

]
= (X1 − µ1)TX−1(X1 − µ1)− (X1 − µ1)X−1Y (X2 − µ2)− (X2 − µ2)T (X−1Y )T (X1 − µ1)

+(X2 − µ2)T (Z−1 + Y TX−1Y )(X2 − µ2)
= (X1 − µ1 − Y (X2 − µ2))TX−1(X1 − µ1 − Y (X2 − µ2)) − (X2 − µ2)TY TX−1Y (X2 − µ2)

+(X2 − µ2)T (Z−1 + Y TX−1Y )(X2 − µ2)
= (X1 − µ1 − Y (X2 − µ2))TX−1(X1 − µ1 − Y (X2 − µ2)) + (X2 − µ2)TZ−1(X2 − µ2) (5.15)

where X, Y and Z are defined as before. On the other hand, p(X2) =
∫
p(
[

X1

X2

]
)dx1 is computed using the above

relation as

p(X2) =
1

(2π)(n1+n2)/2(det(Σ))1/2
exp−

1
2 (X2−µ2)TZ−1(X2−µ2)

∫ ∞

−∞
exp−

1
2 (X1−µ1−Y (X2−µ2)

TX−1(X1−µ1−Y (X2−µ2)
T )dx1.

(5.16)
Using (5.13) and (5.10), we can modify the above eq. as

=
1

(2π)(n1+n2)/2(det(Σ))1/2
(2π)n1/2(det(X))1/2exp−

1
2 (X2−µ2)

TZ−1(X2−µ2)

=
1

(2π)n2/2(det(Z))1/2
exp−

1
2 (X2−µ2)TZ−1(X2−µ2) (5.17)

Therefore, the conditional distribution function P (X1, X2) conditioned on X2 = x2 is given using (5.15) and (5.17)
and again (5.10), by

p(
[

X1

x2

]
)( = p(X1|X2 = x2)) =

p(X1, X2 = x2)
p(X2 = x2)

=
1

(π)n1/2(det(X))1/2
exp−

1
2 (X1−µ1−Y (x2−µ2))TX−1(X1−µ1−Y (x2−µ2)) (5.18)

That is, the conditionalmeanE(X1 |X2) and the conditional covariance matrix cov(X1 , X1|X2) = E((X1−E(X1|X2))(X1−
E(X1|X2))T |X2) is given as follows:

E(X1|X2) = µ1 + Y (X2 − µ2) (5.19)
cov(X1 , X1|X2) = X (5.20)

This relationship is the most important formula in the following.

5.1.3 The Kalman Filter

Let consider the following system represented in the state space model:

x(k + 1) = Φx(k) + Γu(k) + v1(k) (5.21)
y(k) = Cx(k) + v2(k) (5.22)

where v1(k) and v2(k) are system and measurement noise which are both white and Gaussian signals and, we assume
the following conditions are satisfied:

E{x(0)} = x0, cov{x(0), x(0)} = Σ0 (5.23)

E{
[

v1(l)
v2(l)

] [
vT1 (k) vT2 (k)

]} =
[

Q S
ST R

]
δ(k − l), Q = QT ≥ 0, R = RT > 0 (5.24)
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where δ() is a Kronecker’s delta. We consider an optimal estimator or Kalman filter which estimates the state x(k+1)
based on output measurements Y(k) = {y(k), y(k− 1), y(k− 2), · · ·}, namely x̂(k+ 1) is an estimate of x(k+1) which
satisfies

minx̂(k+1)E{||x(k+ 1)− x̂(k + 1)||2} = minx̂(k+1)E{E{||x(k+ 1) − x̂(k + 1)||2|Y(k)}}. (5.25)

In order to use the preceding arguments in the previous section, we re-represent (5.21) and (5.22) into a matrix form
as [

x(k + 1)
y(k)

]
=

[
Φ I 0
C 0 I

] x(k)
v1(k)
v2(k)


 +

[
Γ
0

]
u(k) (5.26)

Let assume that the conditional mean of x(k) and the conditional covariance is given as x̂(k) and Σ(k). This is true
at k = 0 because we assume x0 and Σ0 are known. From (5.26) we can calculate the conditional means of x(k + 1)
and y(k) conditioned on Y(k − 1) as[

x̂(k + 1)
ŷ(k)

]
=

[
Φx̂(k)
Cx̂(k)

]
+

[
Γ
0

]
u(k) (5.27)

On the other hand, the conditional covariance is given as follows. Since[
x̃(k + 1)
ỹ(k)

]
=

[
x(k + 1)
y(k)

]
−

[
x̂(k + 1)
ŷ(k)

]

=
[
Φx̃(k) + v1(k)
Cx̃(k) + v2(k)

]
(5.28)

where x̃(k) = x(k)− x̂(k). Then the conditional covariance is calculated as

E{
[

x̃(k)
ỹ(k)

] [
x̃T (k) ỹT (k)

] |Y(k − 1)} =
[
ΦΣ(k)ΦT + Q ΦΣ(k)CT + S
CΣ(k)ΦT + ST CΣ(k)CT + R

]
. (5.29)

Since we have one more observation y(k), we can modify x̂(k) based on y(k). Let consider x(k+1) and y(k) as X1 and
X2 in (5.18), then we can directory calculate E{x(k + 1)|y(k)} = E{x(k + 1)|{y(k),Y(k − 1)}} = E{x(k + 1)|Y(k)}
and its conditional covariance if we consider

Σ =
[
Σ11 Σ12

ΣT12 Σ22

]

=
[
ΦΣ(k)ΦT + Q ΦΣ(k)CT + S
CΣ(k)ΦT + ST CΣ(k)CT + R

]
. (5.30)

That is, using (5.19) and (5.20) we have

x̂(k + 1) = Φx̂ + Γu(k) + (ΦΣ(k)CT + S)(CΣ(k)CT + R)−1(y(k) − Cx̂(k)) (5.31)
Σ(k + 1) = ΦΣ(k)ΦT + Q − (ΦΣ(k)CT + S)(CΣ(k)CT + R)−1(ΦΣ(k)CT + S)T . (5.32)

As in the previous section, x̂(k + 1) is the conditional mean of the all observations and it is therefore optimal. If we
introduce Kalman filter gain K(k) as

K(k) = (ΦΣ(k)CT + S)(CΣ(k)CT + R)−1 (5.33)

then the Kalman filter is summarized in the following theorem.

[Theorem](The Kalman Filter)
For the system given by (5.21) and (5.22), the optimal filter is given by the following Kalman filter:

x̂(k + 1) = Φx̂(k) + Γu(k) + K(k)(y(k) − Cx̂(k))), x̂(0) = x0 (5.34)
Σ(k + 1) = ΦΣ(k)ΦT + Q − K(k)(CΣ(k)CT + R)KT (k), Σ(0) = Σ0 (5.35)

K(k) = (ΦΣ(k)CT + S)(CΣ(k)CT + R)−1 (5.36)
(5.37)
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5.1.4 Innovation Process

Let consider the property of the estimation error given by

ν(k) = y(k) − Cx̂(k). (5.38)

The sequence of ν(k) is called innovation process. In order to consider the process, we consider the Kalman filter as
a system whose input and output are y(k) and ν(k). That is,

x̂(k + 1) = (Φ−K(k)C)x̂ + K(k)y(k) (5.39)
ν(k) = −Cx̂(k) + y(k). (5.40)

Then we can show that the output ν has no correlation, which means that ν(k) is a white signal even though the
input signal y(k) is not. So this system is sometimes called a whiting filter. In order to show the property, we consider
E{ν(k)νT(k − i)}. Since if we define x̃(k) = x(k)− x̂(k), the error system is given by

x̃(k + 1) = (Φ −K(k)C)x̃(k) + v1(k) − K(k)v2(k) (5.41)
=: Φc(k)x̃(k) + v1(k) − K(k)v2(k), (5.42)

where Φc(k) = Φ −K(k)C, then the state x̃(k) can be expressed explicitly as

x̃(k) = H(k − 1, k − i)x̃(k − i) +
k−1∑
j=k−i

H(k − 1, j + 1)(v1(j) −K(j)v2(j)) (5.43)

where
H(k, k − i) = Φc(k)Φc(k − 1) · · ·Φc(k − i).

Since

E{ν(k)νT(k−i)} = CE{x̃(k)x̃T (k−i)}CT + CE{x̃(k)vT2 (k−i)} + E{v2(k) ˜x− i
T
(k)}CT + E{v2(k)vT2 (k−i)}, (5.44)

the first term in the right-hand side becomes

CE{x̃(k)x̃T (k − i)}CT = CH(k − 1, k− i)Σ(k − i)CT (5.45)

and the second term is
CE{x̃(k)vT2 (k − i)} = −CH(k − 1, k− i + 1)K(k − i)R. (5.46)

The third term is zero since they don’t have correlation and the fourth one is trivially Rδ(i). Therefore we have

E{ν(k)νT(k − i)} = CH(k− 1, k− i+ 1)(Φc(k − i)Σ(k − i)CT −K(k − i)R) + Rδ(i)
= CH(k− 1, k− i+ 1)((Φ−K(k − i)C)Σ(k − i)CT −K(k − i)R) + Rδ(i) (5.47)

On the other hand, from the definition of the Kalman filter gain, we have

K(k − i)R = ΦΣ(k − i)CT −K(k − i)CΣ(k − i)CT . (5.48)

Substituting the above equation into (5.47), we have

E{ν(k)νT(k − i)} = Rδ(i), (5.49)

which means that ν(k) is white.
Up to now, the Kalman filter gain is time varying. Though the gain is time varying but it can be pre-determined,

it is suitable for actual implementations that the gain is constant. For the steady state of the Kalman filter, the
following fact is known.
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[Fact]
Assume (C,A) is detectable and a matrix D is defined by

Q = DDT . (5.50)

If (A,D) is stabilizable and does not have uncontrollable mode on the unit circle, there exist a unique steady state
positive definite solution of ARE which stabilize the steady state Kalman filter, where ARE is given by

Σ − ΦΣΦT + ΦΣCT (CΣCT + R)−1CΣΦT = 0 (5.51)

5.2 Minimum Variance Control

Let consider a time invariant model of the system based on the Kalman filter represented by

x̂(k + 1) = Φx̂(k) + Γu(k) + Kν(k) (5.52)
y(k) = Cx̂(k) + ν(k). (5.53)

Note that ν(k) is the innovation process. If we take a Z transform of the both sides, we have

y(z) = C(zI −Φ)−1Γu(z) + (C(zI − Φ)−1K + I)ν(z). (5.54)

From the above equation, we have an ARMAX model as follow:

A(q−1)y(k) = B(q−1)u(k) + C(q−1)ν(k) (5.55)

where

A(q−1) = 1 + α1q
−1 + · · · + αnq

−n (5.56)
B(q−1) = q−d(β0 + β1q

−1 + · · · + βn−dq−n+d) (5.57)
C(q−1) = 1 + γ1q

−1 + · · · + γnq
−n (5.58)

Note that the coefficients of C(q−1) depend on the Kalman filter gain. The minimum variance controller is a controller
which minimizes

J = E{||y∗(k + d)− y(k + d)||2}. (5.59)

First let us consider optimal d-step ahead predictor. Assume that α(q−1) and β(q−1) which satisfy the following
equations are given:

α(q−1) = G(q−1) (5.60)
β(q−1) = F (q−1)B′(q−1) (5.61)

and F (q−1) and G(q−1) are the solutions of the following Diophantine equation:

A(q−1)F (q−1) + q−dG(q−1) = C(q−1) (5.62)

Note that the highest degree of F (q−1) is d− 1. As usual, multiplying F (q−1) both sides of the system and using the
Diophantine equation, we have

y(k + d) = 1/C(q−1)(α(q−1)y(k) + β(q−1)) + F (q−1)ν(k+ d). (5.63)

On the other hand, ν(k) is an innovation process and it has no correlation of Y(k) since the highest degree of F (q−1)
is d− 1. Therefore, the optimal prediction of y(k + d) is given by

ŷ(k + d) = 1/C(q−1)(α(q−1)y(k) + β(q−1)u(k)). (5.64)

Hence, ŷ(k + d) is given by

ŷ(k + d) = α(q−1)y(k) + β(q−1)u(k)− (C(q−1) − 1)ŷ(k + d). (5.65)

Therefore, the optimal control which we can do best is an input which will coincide ŷ(k + d) with y∗(k + d), which is

u(k) = 1/β(q−1)(y∗(k + d)− α(q−1)y(k) + (C(q−1)− 1)ŷ(k + d)). (5.66)
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Chapter 6

Model Based Adaptive Control of Robot
Manipulators

In this section a basic model basic adaptive control method proposed by J.J. Slotine [6] is first explained in cases where
dynamic parameters of the robot manipulators are unknown. This algorithm utilizes properties of the mechanical
systems and is an adaptive version of well known ”resolved acceleration control”. This method does not require
acceleration measurements and is very practical for implementations. In this section other two modified methods
which are robust for disturbances are also explained. The second one is the one which is robust for system noise [10]
and the third one is that which is robust for measurement noise [11]. In order to explain those methods we need some
properties of the structure of the robot manipulators, which will be explained in the following sub-section.

We can assume that the dynamic equation of the robot manipulators are expressed, without loss of generality, by :

M (q)q̈ + (C(q, q̇) +D)q̇ + G(q) = τ (6.1)

where
q : Generalized coordinate vector
M (q) : Inertia matrix
C(q, q̇) : Colioli’s and centrifugal force term
D : Damping factor
G(q) : Gravity term
τ : Generalized force vector
We should note that the expression of C(q, q̇) is not unique. In the following discussion we assume that the state
(q, q̇) is measurable, and for the simplicity we consider that the term D is zero. For this dynamic model, we have the
following properties about each term.[1][11]

［Property 1 ] M (q) is symmetric.

［Property 2］M (q) is positive defined and there exist constants, λm and λM , which satisfy the next inequalities if
all joints are of revolution.

0 < Mm ≤ λ(M (q)) (6.2)
λ(M (q)) ≤ MM < ∞ (6.3)

where λ(M ) is a eigenvalue of a matrix M .
(Later λ is also used as a design parameter but it does not make confusion from the context.)

［Property 3］C(q, q̇) is bounded by q̇, namely

||C(q, q̇)|| ≤ CM ||q̇|| (6.4)
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［Property 4］C(q, ·) satisfies the following equalities:
C(q, x)y = C(q, y)x (6.5)

C(q, x+ αy) = C(q, x) + αC(q, y) (6.6)

［Property 5］K := Ṁ (q) − 2C(q, q̇) is a skew symmetric matrix, namely which satisfies
K + KT = 0 or xTKx = 0 for ∀ x (6.7)

［Property 6］Gravity term, G(q), is bounded for all bounded q.

［Property 7］If we choose a proper parameter vector a of the manipulator, the dynamic equation (6.1) can be
represented as a multiplication of a regression matrix Y whose elements can be all calculated using observation
signals and the parameter vector a. That is

Y (q, q̇, q̈)a = τ (6.8)

In the preceding explanation, we assume the dynamic equation is represented in a joint coordinate space, however,
the similar properties are also satisfied in a world coordinate space.

Let consider about the above properties in the case of planar two link manipulator whose dynamic equation is
easily derived based on a straight forward calculation, e.g., Lagrangian formulation:[

φ1 + φ2 + 2φ3c2 φ2 + φ3c2
φ2 + φ3c2 φ2

] [
θ̈1

θ̈2

]
+

(
−φ3s2

[
θ̇2 θ̇1 + θ̇2

−θ̇1 0

]
+
[

d1 0
0 d2

])[
θ̇1

θ̇2

]

=
[

τ1
τ2

]
(6.9)

where s2, c2 stand for sin(θ2) and cos(θ2) and

φ1 := m1l
2
1 + m2a

2
1 + I1

φ2 := m2l
2
2 + I2

φ3 := m2a1l2

［Property 1］The symmetry is obvious from the dynamic equation (6.9).

［Property 2］The positiveness of the matrix M is shown by calculating a determinant of the matrix as

M11 ≥ φ1 + φ2 − 2φ3

= m1l
2
1 + I1 + I2 +m2(l2 − a1)2 > 0

detM ≥ φ1φ2 − φ2
3

= m1m2l
2
1l

2
2 +m2I1l

2
2 + (m1l

2
1 +m2a

2
1 + I1)I2

> 0.

Furthermore, the constants MM ,Mm are given as

MM = (φ1 + φ2)Φ

Mm =
φ1φ2 − φ2

3

φ1 + 2φ2 + 2φ3

where

Φ := max

{
1,

φ2 + φ3

φ1 + φ2

}
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Fig.1 Considered planar two link manipulator

［Property 3］Let consider x = [x1, x2]T , we have

xTCT (q, q̇)C(q, q̇)x

= φ2
3s

2
2(x

2
1‖q̇‖2 + 2x1x2θ̇2(θ̇1 + θ̇2) + x22(θ̇1 + θ̇2)

2)

≤ φ2
3(x

2
1‖q̇‖2

+ 2|x1x2||θ̇2(θ̇1 + θ̇2)| + x
2
2(θ̇1 + θ̇2)

2
)

Using
2|aT b| ≤ ||a||2 + ||b||2,

we have
xTCT (q, q̇)C(q, q̇)x ≤ φ2

3(x21||q̇||2 + ||x||2|θ̇2(θ̇1 + θ̇2)| + x22(θ̇1 + θ̇2)
2).

Furthermore using this inequality:

(a + b)2 ≤ 2(a2 + b2), a, b ∈ R,

we have
xTCT (q, q̇)C(q, q̇)x ≤ φ2

3(x
2
1||q̇||2 + ||x||2(|θ̇2(θ̇1 + θ̇2)| + 2x2

2||q̇||2).

The similar alculation shows
||C(q, q̇)|| ≤ 2|φ3|||q̇||.

［Property 4］Let x = [x1, x2]T , y = [y1, y2]T , we have

C(q, x)y = φ3s2

[
x2 x1 + x2
−x1 0

][
y1
y2

]
= φ3s2

[
y1x1 + (y1 + y2)x2

−y1x1

]
= φ3s2

[
y2 y1 + y2
−y1 0

][
x1
x2

]
= C(q, y)x.

The other equations are also shown similarly.
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［Property 5］　 Calculation of Ṁ − 2C shows that

Ṁ − 2C = φ3s2

[ −2θ̇2 −θ̇2

−θ̇2 0

]

+ φ3s2

[
2θ̇2 2θ̇1 + 2θ̇2

−2θ̇1 0

]

= φ3s2

[
0 2θ̇1 + θ̇2

−(2θ̇1 + θ̇2) 0

]
.

［Property 6］　 This term is zero since the manipulator is planar one.

［Property 7］From (6.8), we set φ4 = d1, φ5 = d2, and we have[
θ̈1 θ̈1 + θ̈2 c2(2θ̈1 + θ̈2)− s2θ̇2(2θ̇1 + θ̇2) θ̇1 0
0 θ̈1 + θ̈2 c2θ̈1 + s2θ̇

2
1 0 θ̇2

]

×




φ1

φ2

φ3

φ4

φ5


 =

[
τ1
τ2

]
.

Now we have two basic lemmas which play very important roles to show the stabile of the adaptive control
algorithms.
(Lemma 1) [12]
Assume that H(s) is a strictly proper stable transfer function whose input is u and whose output is y. If u ∈ L2, then
y ∈ L2 ∩L∞、ẏ ∈ L2. Furthermore, y(t)→ 0 (t → ∞).

(Lemma 2) [12]
If y ∈ L2 and ẏ ∈ L∞, y is uniformly continuous and y(t) → 0 (t → ∞).

Using these Lemmas, the basic adaptive control algorithm is given in Theorem 1.

(Theorem 1) [6]
Let consider that qd, q̇d, q̈d ∈ L∞ are desired position, velocity and acceleration. We define s (augmented error ) and
q̇r (virtual reference) as follows:

s := ė + Λe, e := q − qd (6.10)
q̇r := q̇d − Λe. (6.11)

If the following control input and parameter update (adaptation) law are used, then q and q̇ converge to qd and q̇d
respectively:

τ = Yc(q, q̇, q̇r, q̈r)â−Kds (6.12)
˙̂a = −Γ−1Y Tc (q, q̇, q̇r, q̈r)s (6.13)

Kd > 0, Γ > 0

where
Yc(q, q̇, q̇r, q̈r) := D̂q̈r + Ĉ(q, q̇)q̇r + Ĝ(q), (6.14)

and ˆ means that the corresponding term is calculated using estimated parameters. Please note that in this control
law we do not require acceleration signal.
(Note)
In the algorithm we used the word ’parameter update’. Please note, however, that it is not assumed the estimated
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parameter converge to true ones, and the adaptive control law can be considered as a kind of direct adaptive control
method in a sense.
(Proof)
Let ã be a difference between the true parameter and the estimated one as

ã := â − a, (6.15)

and consider the following Lyapunov function candidate for s and ã: (In the following the arguments are omitted for
the simplicity.)

V1 :=
1
2
sTM (q)s +

1
2
ãTΓã (6.16)

Taking a derivative of V1 gives us

V̇1 = sTM (q̈ − q̈r) +
1
2
sT Ṁs + ãTΓ ˙̃a.

Using the relationship of (6.1) and noting that a is a constant vector and ˙̃a = ˙̂a, we have

= sT (τ − Cq̇− G)− sTMq̈r +
1
2
sT Ṁs+ ãTΓ ˙̂a.

Using the property 5 and the definition of q̇r, we have

= sT (τ −Mq̈r − Cq̇r − G) + ãTΓ ˙̂a.

Substituting the control law and the parameter updation law into the above equation, we have

= −sTKds ≤ 0. (6.17)

From this inequality, it is obvious that V1(t) is monotonically decreasing function and s and â are bounded signals.
Furthermore, integrating the above inequality, we have

||s||2 ≤ 1
λd

V1(0), λd := minλ(Kd),

which shows s ∈ L2. Let now consider that the definition of s is a first order state space differential equation whose
input is s and whose state is e. Then the transfer function from u to e is a strictly proper stable transfer function
and we can use Lemma 1. The lemma shows that e → 0 and e and ė ∈ L∞ and ė ∈ L2. Furthermore, from the
conditions, it is shown that q, qr, q̇, q̇r are all bounded, and using

||Mq̈|| = ||τ − Cq̇ −G||

and the roundedness of â and the property 2, we can show q̈ is bounded signal. From these properties we have ë ∈ L∞,
and it follows that ė → 0 from Lemma 2,. This completes the proof.

[]

The adaptive control method given by Theorem 1 takes advantage of properties of the dynamics of the mechanical
systems and is very sophisticated one in theory. In practice it has some difficulties for the actual implementations.
One is that since the parameter updation law is just a integration law, the convergence of the parameters is not good
in general. For this problem, J.J. Slotine has proposed a similar adaptive control method but it incorporates the least
square parameter estimation law. The other problem is that in order to derive the control law, any disturbance, e.g.,
system noise or observation noise, is not assumed in the system. In the real situations, however, there always exist
the disturbances. In the linear systems, bounded noise signal does not cause instability problem, however, in the
non-linear system as the adaptive control system, they sometimes cause instability phenomena. In such a sense, the
adaptive control method is not robust.

In general we use the following three methods to make adaptive control algorithms robust for the disturbances.
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1. Introducing dead zone for parameter updation law.

2. Normalization of the signals used for parameter updation law.

3. Introducing a feedback term in the parameter updation law.(σ modification)

In the parameter updation law, error signals (augmented error signals) are used and the error signal become small
when the parameters converges to the true ones without the disturbances. They does not becomes small when there
exist miss-match between the model and the actual plant, then the persistent error will make the estimated parameters
diverge. In that case we can not expect that the error signal becomes smaller than a certain value. For that case,
the error signal should be considered zero even though the signal is not zero, and the parameter is not updated. The
zone of the certain value of the error signal is called dead zone. The second method is a method to avoid parameter
divergence introducing a normalization factor and a constant number as a denominator in the updating law as in the
least square method. The third method is a method to avoid parameter divergence introducing a feedback term in
the parameter updation law, which is given in the following theorem. (Theorem 2) [10]
We assume that a bounded system noise d exists in the dynamic equation as

M (q)q̈ + (C(q, q̇) +D)q̇ + G(q) + d(t) = τ. (6.18)

where d(.) is a function of only time and it satisfies

||d||∞ = d̄. (6.19)

We also assume that a norm of the parameter vector is bounded above by

||a|| ≤ ā, (6.20)

and ā is known. If the control law and the parameter updation law are modified as

τ = Yc(q, q̇, q̇r, q̈r)â−Kds,Kd > 0 (6.21)
˙̂a = −Γ−1(Y Tc (q, q̇, q̇r, q̈r)s + σâ),

Γ > 0, σ > 0, (6.22)

where ΛTKd is a symmetric and positive define and σ0 is a certain positive scaler and σ is determined as

σ =



0 if ||â|| < ā

σ0

(
||â||
ā

− 1
)

if ā < ||â|| ≤ 2ā
σ0 if 2ā < ||â||

, (6.23)

then (e, ė) does converge into the region expressed by

D :=
{
(e, ė) | ||e||2 + λmin||ė||2 ≤ d̄2

β2
(1 + c2),

}
(6.24)

where

λmin := minλ(Λ), λmax := maxλ(Λ),

c :=
λmax
λmin

, β := minλ(Kd).

(Note)
This theorem shows that if the disturbance is large, then the region will become naturally big. On the other hand,
the values of Λ, and Kd, which are gain and design parameters, are big, the region will become small. When c = 1
and the manipulator is of one degree of freedom, the region of the convergence is directed as in Fig. 2.
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Fig.2 Region of the convergence.

(Proof)
Modifying the Lyapunov candidate in Theorem 1 as

V2 :=
1
2
sTM (q)s + eTΛTKde +

1
2
ãTΓã. (6.25)

Taking the derivative of V2 and following the previous derivations in the proof of Theorem 1, we have

V̇2 = −ėTKdė − eTΛTKdΛe − σãT â + sT d. (6.26)

Due to the determination of σ, we have σãT â ≥ 0 since

σ(â − a)T â = σ(||â||2 − aT â)
≥ σ(||â||2 − ||a||||â||)
≥ σ||â||(||â|| − ā) ≥ 0. (6.27)

Therefore, we have

V̇2 ≤ −ėKd ė− eT ΛTKdΛe+ sT d

≤ −β||ė||2 − βλ2
min||e|| + ||ė||||d|| + λmax||e||||d||

≤ −β||ė||2 − βλ2
min||e|| + ||ė||d̄ + λmax||e||d̄

In order to cancel out ||ė||d̄, ||e||d̄ from the above equation, completing a square we have

V̇2 ≤ −β
2
||ė||2 − β

2
(||ė|| − d̄

β
)
2

+
d̄2

2β

−βλ
2
min

2
||e||2 − β

2
(λmin||e|| − λmaxd̄

λminβ
)2 +

βλ2
maxd̄

2

2λ2
min

≤ β

2

(
−||ė||2 − λ

2
min||e||2 +

d̄2

β2
(1 +

λ2
max

λ2
min

)

)
. (6.28)

Since in the region of ‖ė‖2 + λ2
min||e||2 > d̄2

β2 (1 + c2), V̇2 < 0, then (e, ė) → D.

[]

In theorem 2, we just considered the system noise, in practice there exists observation noise. In particular, if
we obtain velocity signal taking a difference of the position signal, the quantization error sometimes leads to drift of
the parameter signal. This phenomena is crucial when the desired signal is constant and the position error is small.
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Let consider this phenomena in the basic adaptive control method. Let assume that e is zero and ė is n being the
observation noise, and the parameter updation law becomes as

˙̂a = −Γ−1Y Tc (q, n, 0,−Λ(n))(n). (6.29)

Please notice that there exists a term consisting of the square of n, and this term becomes the source of the drift. For
this problem, the following Theorem give a solution.
(Theorem 3) [11]
Assume that the control input is determined by

τ = Yc(q, q̇ − λe, q̇d, q̈d)â−Kdė −Kpe (6.30)
˙̂a = Γ−1Yc(q, q̇− λe, q̇d, q̈d)s (6.31)

where
Kd = KTd > 0, Kp = KTp > 0.

Assume also that Λ = λI and
λ :=

λ0

1 + ||e|| (6.32)

and
0 < λ0 < min

{
Kdm

(3MM + 2CM )
,

4Kpm

(KdM +Kdm)

}
. (6.33)

where

Kdm := minλ(Kd), KdM := maxλ(Kd),
Kpm := minλ(Kp), KpM := maxλ(Kp),

Mm,MM , CM are constants in (Property 2) and (Property 3). Then e and ė does converges to zero in large and all
internal signals are bounded.
(Note)
In this algorithm, since we needMm,MM , Cm, the algorithm is not a pure adaptive controller in a sense. The resultant
control algorithm is just a PD controller with gravity compensation. From this structure, please notice that there does
not exist square term of n but that of the desired value.
(Proof)
Substituting the control input into (6.1), we have

Më + C(q, q̇)ė + λC(q, e)q̇d +Kdė−Kpe

= Yc(q, q̇ − λe, q̇d, q̇dd)ã. (6.34)

Let now consider the following Lyapunov function candidate:

V3 =
1
2
sTM (q)s+

1
2
eTKpe +

1
2
ãTΓã. (6.35)

Taking the derivative of it, we have

V̇3(e, ė, ã)

= sT
[
λM (q)ė+ λ̇M (q)e + λC(q, q̇)e

−λC(q, e)qd −Kdė −Kpe] + ėTKpe. (6.36)

Introducing the following a new variable s1 defined by

s1 ≡ ė +
λ

2
e, (6.37)
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the above equation can be re-expressed using the variable as

V̇3(e, ė, ã) = s
T
1 [λM(q)ė+

λ̇M(q)e+ λC(q, q̇)e,−λC(q, e)qd −Kdė−Kpe
]

+ ė
T
Kpe.

(6.38)

Now consider the second and third terms, we have the following inequalities using the determination of λ and the
property of C(q, .) :

λ̇sTM(q)e ≤ 2λ0MM(‖s1‖2 + ‖λ
2
e‖2) (6.39)

λsTC(q, ė)e ≤ 2λ0CM (‖s1‖2 + ‖λ
2
e‖2). (6.40)

From these inequalities, we have

V̇3(e, ė) ≤ −κ1‖s1‖2 − κ2‖λ2 e‖
2. (6.41)

where

κ1 ≡ Kd,m − 3λ0MM − 2λ0CM (6.42)

κ2 ≡ 4
λ0

Kp,m −Kd,M − 2λ0MM − 2λ0CM .

(6.43)

From the condition of λ0, we have V̇3 ≤ 0 and V3 is a monotonically decreasing function. As in Theorem 1, we can
show that e, s1 ∈ Ln∞, and λ ∈ Ln∞ and e ∈ Ln2 , ė ∈ L∞. Therefore, from Lemma 1 we have e → 0 (t → ∞). We can
also show the convergence of ė as in a similar way in Theorem 1.

[]

In actual implementations the computation of Yc() is the most difficult part. The computation is, however, relatively
easily executed using spatial notation. Since this discussion is beyond the scope of this manuscript, please refer to the
reference. [7]
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